这题是FFT的应用
考虑构建指数型母函数,系数是物品的个数,指数是物品的价值
然后分成三种情况容斥一下
然后就不会了。。这怎么FFT啊
然后orz了Miskcoo大神的博客,不仅学会了怎么做,还优化了一下速度……
复数什么的直接无视,和正常的情况一样搞就行了
以后还是要多做题啊……
#include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cmath> using namespace std; const int N=262145; const double Pi=acos(-1); int An,n,Step,mx_val,Rev[N]; struct Complex{ double a,b; Complex(){a=0.0,b=0.0;} Complex(double sa,double sb){a=sa;b=sb;} friend Complex operator+(Complex A,Complex B){return Complex(A.a+B.a,A.b+B.b);} friend Complex operator-(Complex A,Complex B){return Complex(A.a-B.a,A.b-B.b);} friend Complex operator*(Complex A,Complex B){return Complex(A.a*B.a-A.b*B.b,A.a*B.b+A.b*B.a);} }A[N],B[N],C[N],div2=Complex(1.0/2.0,0.0),div3=Complex(1.0/3.0,0.0),div6=Complex(1.0/6.0,0.0); void FFT(Complex *x,int flag){ for(int i=0;i<n;i++)if(i<Rev[i])swap(x[i],x[Rev[i]]); for(int k=1;k<n;k<<=1){ Complex wk=Complex(cos(Pi/k),flag*sin(Pi/k)); for(int i=0;i<n;i+=k<<1){ Complex wkj=Complex(1.0,0.0); for(int j=0;j<k;j++){ Complex a=x[i+j],b=x[i+j+k]*wkj; x[i+j]=a+b; x[i+j+k]=a-b; wkj=wkj*wk; } } } if(flag==-1)for(int i=0;i<n;i++)x[i].a/=n; } int main(){ freopen("3771.in","r",stdin); freopen("3771.out","w",stdout); scanf("%d",&An); for(int i=0;i<An;i++){ int x; scanf("%d",&x); A[x].a+=1.0; B[x*2].a+=1.0; C[x*3].a+=1.0; if(3*x>mx_val)mx_val=3*x; } for(n=1,Step=0;n<mx_val;n<<=1,Step++); for(int i=0;i<n;i++)Rev[i]=(Rev[i>>1]>>1)|((i&1)<<(Step-1)); FFT(A,1); FFT(B,1); for(int i=0;i<n;i++)A[i]=A[i]*A[i]*A[i]*div6+(A[i]*(A[i]-B[i])-B[i])*div2+A[i]; FFT(A,-1); for(int i=1;i<mx_val;i++)A[i]=A[i]+C[i]*div3; for(int i=0;i<mx_val;i++){ int x=(int)(A[i].a+0.5); if(x)printf("%d %d\n",i,x); } return 0; }