把FFT模版略微改动一下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | #include<cstdio> #include<algorithm> #include<cstring> #include<cstdlib> #include<cmath> using namespace std; const int N=270000; const double Pi= acos (-1); int An,Bn,Cn,n,Rev[N],Step; struct Complex{ double a,b; Complex(){} Complex( double sa, double sb){a=sa;b=sb;} friend Complex operator+(Complex A,Complex B){ return Complex(A.a+B.a,A.b+B.b);} friend Complex operator-(Complex A,Complex B){ return Complex(A.a-B.a,A.b-B.b);} friend Complex operator*(Complex A,Complex B){ return Complex(A.a*B.a-A.b*B.b,A.a*B.b+A.b*B.a);} }A[N],B[N],C[N]; void FFT(Complex *x, int flag){ for ( int i=0;i<n;i++) if (i<Rev[i])swap(x[i],x[Rev[i]]); for ( int k=1;k<n;k<<=1){ Complex wk=Complex( cos (Pi/k),flag* sin (Pi/k)); for ( int i=0;i<n;i+=k<<1){ Complex wkj=Complex(1.0,0.0); for ( int j=0;j<k;j++){ Complex a=x[i+j],b=x[i+j+k]*wkj; x[i+j]=a+b; x[i+j+k]=a-b; wkj=wkj*wk; } } } if (flag==-1) for ( int i=0;i<n;i++)x[i].a/=n; } int main(){ freopen ( "2194.in" , "r" ,stdin); freopen ( "2194.out" , "w" ,stdout); scanf ( "%d" ,&An); Bn=An;Cn=An+Bn-1; for ( int i=0;i<An;i++) scanf ( "%lf %lf" ,&A[i].a,&B[An-i].a); for (n=1,Step=0;n<Cn;n<<=1,Step++); for ( int i=0;i<n;i++)Rev[i]=(Rev[i>>1]>>1)|((i&1)<<(Step-1)); FFT(A,1);FFT(B,1); for ( int i=0;i<n;i++)C[i]=A[i]*B[i]; FFT(C,-1); for ( int i=Cn/2+1;i<=Cn;i++) printf ( "%d\n" ,( int )(C[i].a+0.5)); return 0; } |